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Unsteady Aerodynamic Forces and Aeroelastic Response
for External Store of an Aircraft

Deman Tang* and Earl H. Dowell†
Duke University, Durham, North Carolina 27708-0300

An experimental identi� cation investigation of unsteady and stall aerodynamic coef� cients for an ex-
ternal store of an aircraft has been made. The coef� cient identi� cation is performed by a least-squares
procedure based on the measured time series obtained from an aeroelastic model undergoing aerodynamic
excitation caused by a gust generator. The results are veri� ed by the good correlation between the the-
oretical prediction and aerodynamic measurement data. Using the identi� ed unsteady aerodynamic model,
numerical investigations for both the stability (� utter) and nonlinear aeroelastic response of this external
store model have been made. Also, the results were compared with those obtained from a quasisteady
aerodynamic model. It is seen that the effects of unsteady aerodynamics on the nonlinear aeroelastic
response are signi� cant when the angle of attack is large.

Nomenclature
a0 = linear lift curve slope
bm = linear pitch moment curve slope
Ch, Cf = plunge and pitch moment structural damping

coef� cients
CL, CM = nondimensional lift and pitch moment

coef� cients, L /qS0, Me/lqS0, respectively
,C CL M1 1

= nondimensional linear lift and pitch moment
coef� cients

,C CL M2 2
= nondimensional nonlinear lift and pitch moment

coef� cients
h = dimensional and nondimensional plunge

displacement, h/l
Je = moment of inertia about the elastic axis
Kh = stiffness of store model in plunge de� ection
Kf = pitch stiffness of store model about the elastic

axis
k = reduced frequency, [v l/2u
L = lift force
l = length of the store model
Me = pitch moment about the elastic axis
m = total mass, mm 1 ms

mm = store model mass
ms = support system mass
q = dynamic pressure, ru21–

2

R0 = maximum cross-sectional radius of the external
store model

S0 = 2[pR0

t = time
tt = l/u, a reference time
u = � ow velocity
ucr = critical � utter velocity
Xm, xm = distance of the c.g. from the elastic axis,

xm = Xm/l
a = angle of attack
aG = gust angle
Dt = time step
zh, zf = plunge and pitch moment modal damping ratios
u0 = initial pitch angle
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L = eigenvalue matrix
lR, lI = real and imaginary part of the eigenvalue
j = normalized axial distance measured from the tip

of model, x /R0

r = air density
f = pitch displacement
v = frequency
vh, vf = plunge and pitch moment natural frequencies

Superscripts
( Ç ) = d( )/dt

ˆ = perturbation variable

¯ = static equilibrium position

I. Introduction

L IMIT cycle oscillations (LCOs) have been observed in
aeroelastic systems including full-scale aircraft, wind-tun-

nel models and, of course, in theoretical/numerical models.1,2

Structural nonlinearities such as freeplay and geometric
(strain-displacement) effects have been studied in detail and
good correlation between theory (based upon the � rst princi-
ples of mechanics) and experiment has given substantial con-
� dence in our understanding of these effects. In contrast, aero-
dynamic nonlinearities caused by � ow separation still are not
describable from theoretical � rst principles, although a sub-
stantial body of experimental data and techniques exists along
with useful semiempirical theoretical models.

In the present paper � ow separation is modeled using pres-
ently available techniques to describe the oscillating � ow
around a representative external store of an aircraft. Using a
semiempirical aerodynamic model, the aeroelastic LCOs are
calculated that result from � ow separation. The results suggest
that � ow separation at low Mach numbers alone leads to very
large LCOs.

Earlier experimental studies for oscillating two-dimensional
airfoils have provided a great deal of important information on
the physical mechanisms involved in dynamic stall.3–13 Usually
the airfoil was instrumented with several pressure taps along
the airfoil surface. The instantaneous pressure data were then
obtained using a set of upper and lower pressure taps and
corresponding pressure transducers. The integrated pressure re-
sults are normally presented in the body-� xed coordinate sys-
tem and the resultant integrated loads represented by the pitch-
ing moment, CM, the normal-force coef� cient, CN, and the
axial-force coef� cient, CA. The airfoil pitch motion or com-
bined translation/pitch motion is often driven by a mechanical
system. This experimental method has been successful for both
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Fig. 1 Photograph of the experimental setup.

two- and three-dimensional airfoils and wings. However, for
an external store of the aircraft, a dynamic pressure measure-
ment becomes very dif� cult because many pressure taps and
corresponding transducers would be needed for the complex
store structure.

In the present paper a new experimental method is proposed
based upon aerodynamic excitation of an aeroelastic system by
a gust generator14 instead of by a mechanical driving system.
This gust generator is used to produce a near single harmonic
� uid wave in the lateral direction in a wind tunnel, but normal
to the model (Fig. 1). The experimental external store model
is a simple aeroelastic model with one degree of freedom in
plunge or pitch motion. The global lift force or pitch moment
acting on the external store is a function of the structural mo-
tion as well as the gust � eld. Thus we can obtain a set of
aerodynamic forces from the measured responses (displace-
ment, velocity, and acceleration) for a given gust � eld. Similar
to the ONERA semiempirical theoretical model11 for dynamic
stall aerodynamics, we use the measured aeroelastic response
data to identify a system of differential equations relating the
aerodynamic forces to the gust � eld.

Using the identi� ed unsteady aerodynamic model, a com-
parison between the predictions of a theoretical unsteady and
a quasisteady aerodynamic model for the nonlinear aeroelastic
response of the store has been made.

II. Experiment Description
All tests of an external bomb carriage model were performed

in the Duke University low-speed wind tunnel. The wind tun-
nel is a closed-circuit tunnel with a test section of 2.3 3 1.66
ft2 and a length of 4 ft. For the present test the Reynolds
number based upon model length was 0.52 3 106 and the k
was varied up to a value of 0.385. The experimental apparatus
of the external store model with gust excitation system in the
wind tunnel is shown in Fig. 1.

The external store used in this study is a basic carriage
model without bombs or rocket-launchers. The geometry of
the paraboloidal forebody is described by the following fourth-
order polynomial15

4 3 2R /R = 20.0436j 1 0.315j 2 0.962j 1 1.507j 1 0.00280

The model is made of an aluminum alloy material. The axial
c.g. can be adjusted by adding or subtracting a balance weight
from the afterbody of this model. A piece of ground steel bar
with a cross section 3/8 in. in diameter and 23 in. in length is
passed through the half-length point of the model and welded
into this model at the middle of this bar. The ends of the bar
are connected to a support system mounted outside of the wind

tunnel, at the top and bottom. The support mechanism at each
end of the aeroelastic model is a bicantilever beam made of
two steel leaf springs that are 203.2 mm long, 28.6 mm wide,
and 1.02 mm thick. The distance between the two cantilever
beams is 152.4 mm. A support block joins the free ends of the
bicantilevered beams on both top and bottom and is free to
move in the plunge direction. The two support blocks are the
only parts of the support mechanism that move with the model,
and this motion is restricted to the plunge degree of freedom.
The pitch axis (steel bar) of this external store model is
mounted to the upper and lower support blocks through a pair
of precision bearings that have a small amount of dry friction
in the ball. This design allows the model to have a pitch motion
that is independent of the plunge degree of freedom. At the
upper bracket there is a spring wire inserted tightly into the
pitch axis of the model. The ends of the spring wire are simply
supported on the bracket, which provides an adjustable pitch
stiffness.

The pitch angle of the model is measured by a rotational
velocity/displacement transducer (RVDT), which is � xed at the
upper end of the pitch axis. The plunge displacement is mea-
sured using another RVDT that measures the motion of the
upper support block. A microaccelerometer is mounted on the
afterbody of this model that is used to measure the pitch angle
acceleration and another accelerometer is mounted on the up-
per support block to measure the plunge motion acceleration.

The lateral gust velocity uy (or, hence, aG, which is equal to
uy/u) was measured with a differential pressure probe mounted
on a bar located near the external store model. The bar was
attached to a stand � xed on a support table. The pressure probe
consisted of two tubes, or claws, oriented at 90 deg to one
another in the horizontal plane for measuring the lateral gust.
The ends of the tubes protruded from a slender aerodynamic
housing, which was oriented in the wind tunnel such that the
angle between the tubes was bisected by the freestream. The
tubes were connected to a 70.18-psi differential pressure
transducer located outside of the wind tunnel that measured
the pressure difference in the lateral direction. For the calibra-
tion of this pressure probe, see Ref. 14.

Outputs from these transducers were ampli� ed and sent to
an SD 380 signal analyzer and directly recorded on a Macin-
tosh IIci computer through a data-acquisition package, NB-
MIO-16, and data-acquisition and analysis software, Lab-
VIEW. To obtain a comparison of the theory with the test, a
measurement system calibration was completed before the
wind-tunnel test. The dynamic calibration coef� cients were de-
termined by a ground vibration test. The following is a com-
plete listing of the system parameters for the experimental
model: R0 = 0.025 m, l = 0.268 m, vh = 4.34 Hz, vf = 6.13
Hz, zh = 0.008, zf = 0.021, Je = 0.00844 kg m2, mm (model)
= 0.91 kg, ms (supports) = 1.083 kg, m (total) = 1.993 kg, Kh

= 1480.96 kg/s2, and Kf = 12.543 kg m2/s2.
The gust generator consists of an aluminum frame that holds

a maximum of two vanes and a motor drive system as shown
in Fig. 1. For details of the gust generator, see Ref. 14.

III. Differential Equation Modeling
of Unsteady Aerodynamics

A. Perturbed Dynamic Store Equation About
a Steady Equilibrium

A two-dimensional linear (typical section) structural model
of the bomb carriage is analyzed to investigate linear system
stability and nonlinear aeroelastic response resulting from non-
linear (� ow separation) aerodynamic forces. Figure 2 shows a
sketch of the test setup. The (nonlinear) equations of motion
are

2 2d h d f dh
m 2 m X 1 C 1 K h = 2L (1)m m h h2 2dt dt dt
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Fig. 2 Sketch of the two-dimensional external store carriage
model.

Fig. 3 Experimental and curve-� tting static aerodynamic coef-
� cients vs a. L from the experimental data and —— from
curve-� tting method: a) lift (CL) and b) pitch moment about mid-
length (CM).

2 2d f d h df
J 2 m X 1 C 1 K f = M (2)e m m f f e2 2dt dt dt

where Xe is the distance of the elastic axis from the body tip
of the model.

Equations (1) and (2) may be written in nondimensional
form as

2¨ ¨ Çh 2 S f 1 2z v h 1 v h = 2g C (3)a h h h L L

2¨ ¨ Çf 2 S h 1 2z v f 1 v f = g C (4)h f f f M M

where

h = h/l, x = X /lm m

2S = m x /m, S = m x l /Ja m m h m m e

g = qS /ml, g = qS l/JL 0 M 0 e

For small-amplitude motion, a perturbation procedure is
used.

Let f = 1 h = 1 , and a = 1 1 1 aG,Ç¯ ˆ ¯ ˆ ˆ ˆf f, h h ā f (l/u)h
where and are the static equilibrium pitch angle and plunge¯ā h
displacement that are determined using the nonlinear algebraic
Eqs. (3) and (4), when = = = [ 0, = 2 u0, and¨ ¨ Ç ¯Çh h f āf f
aG is the gust excitation angle.

Equations (3) and (4) can then be replaced by a set of non-
linear dynamic equations about the static equilibrium position

¨ Ç¨ 2ˆ ˆˆ ˆh 2 S f 1 2z v h 1 v h = 2g C (a, Ça) (5)a h h h L L

Ç¨ ¨ 2ˆ ˆ ˆˆf 2 S h 1 2z v f 1 v f = g C (a, Ça) (6)h f f f M M

Equations (5) and (6) can be used to calculate the aerody-
namic coef� cients from the measured static and dynamic re-
sponse data. To improve the accuracy of the measured re-
sponse data, we consider two cases independently, i.e., in Eq.
(5) [ 0 but ¹ 0, and in Eq. (6) [ 0 but ¹ 0. Thusˆ ˆˆ ˆf h h f
we use two independent equations to determine the lift and
pitching moment, respectively.

Similar to the two-dimensional ONERA aerodynamic model
equations, these lift and pitch moment coef� cients can be de-
termined from the following � rst- and second-order differential
equations. For simplicity in expression, we use a subscript z
to represent both the lift, CL, and pitch moment, CM, and cor-
responding aerodynamic coef� cients

C = C 1 C 1 s t Ça (7)z z1 z2 z t

Çt C 1 l C = l a a 1 t d Ça (8)t z1 z z1 z 0 t z

2 ¨ Ç Çt C 1 d t C 1 v C = 2w (DC 1 e t DC ) (9)t z2 z t z2 z z2 z z z t z

where tt and l/u and D = .ÇC (­DC /­a) Çaz z

The form of Eqs. (7 – 9) is hypothesized heuristically and
has been shown to represent the essential elements of some
dynamic stall phenomena.11

In this paper quasisteady aerodynamics means that the re-
lationship between CL and a is simply the static one, whereas
unsteady means that the relationship between CL and a is given
by Eqs. (7– 9). Note, however, that both models use Eqs. (5)
and (6), which itself invokes a quasisteady relationship among
a, f, and . To make the ONERA model truly unsteady, itÇh
would be necessary to separately and distinctly account for the
effects of f (and on the one hand and on the other. WeÇ Çf) h
note that some authors, e.g., Tobak,16 have made this distinc-
tion in their models.

B. Determination of Static Aerodynamics

Using Eqs. (5) and (6), we measure the static plunge dis-
placement and pitch angle to determine the static lift and pitch
moment for several initial pitch angles, u0, when the pertur-
bation responses are zero (there is no gust excitation). The
static lift and pitch moment coef� cients are nonlinear for the
whole measurement range of the initial pitch angle u0 = 225
to 25 deg (see Fig. 3 for an airspeed of u = 25.7 m/s). In Fig.
3 the symbol L denotes the experimental data and the solid
line the results from a curve � tting method. Similar results for
CM are also obtained. Note that the experimental data are time-
averaged values. Because of turbulent wake vortices, there are
slight � uctuations about the static value that increase with the
initial pitch angle even when there is no gust excitation.

From the quasistatic aerodynamic coef� cients, we choose a
reference condition, say, a = 0.

Let a0 = .(dC /da) uz0 a =0

Then the static lift (or pitch moment) coef� cient Cz0 is de-
� ned to have two domains: the linear part, Cz0 = a0a and the
nonlinear part, Cz0 = a0a 1 DCz, where DCz is the difference
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between the linear characteristic extended up to the maximum
incidence and the true lift (or pitch moment) coef� cient Cz0

0 if a # asDC = (10)z Ha a 2 C otherwise0 z0

C. Identi� cation of Unsteady Aerodynamic Coef� cients

Equations (5 – 9) represent the coupling of the unsteady aero-
dynamics with the structural response. For determination of
the aerodynamic coef� cients, an identi� cation technique in the
time domain and a least-squares procedure (LSP) is proposed.
The method is described in the following text.

Consider a measured time history, x(t), with a constant sam-
pling time step length, Dt. The sampled version of x(t) is then
de� ned by

x(i) = x[(i 2 1)Dt] i = 1, 2, . . . , N

The total time T is given by

T = (N 2 1)Dt

The velocity and acceleration of this time series can be derived
by three-point formulas:

xÇ(i ) = (1/2Dt)[x(i 1 1) 2 x(i 2 1)]

2ẍ(i ) = [1/(Dt) ][x(i 2 1) 2 2x(i ) 1 x(i 1 1)]

From Eqs. (5) and (6) we can obtain the time-series data of
the lift and the pitch moment coef� cients CL(i ) and CM(i ) for
a given airspeed, u, and initial pitch angle, u0. Note that to
improve accuracy we directly use the measured acceleration
signal that is passed through a low-pass � lter and the velocity
is obtained using a three-point formula in our experiment.

The identi� cation procedure includes two steps.
Step 1, determination of the linear differential equation co-

ef� cients: Set the experimental model to have a zero initial
pitch angle and the airspeed at some � xed value, say, u = 25.7
m/s. The gust excitation frequency is set very close or equal
to the plunge (or pitch) natural frequency. Then we measure
the plunge (or pitch) displacement and acceleration signals of
this model and the gust lateral velocity. From Eq. (8), one has

t d /2Dt 1 l a /2t z z 0C (i 1 1) = a(i 1 1)z1
t /2Dt 1 l /2t z

2t d /2Dt 1 l a /2t z z 0
C (i 2 1) = a(i 2 1)z1

2t /2Dt 1 l /2t z

t st z
C (i 1 1) = C (i 1 1) 1 a(i 1 1)z z1

2Dt

t st z
C (i 2 1) = C (i 2 1) 2 a(i 2 1)z z1

2Dt

Let

d lz z
q = , q = , q = s1 2 3 z

1 1 Dtl /t 1 1 Dtl /tz t z t

Then at (i 1 1)th point in time, we have

a Dta(i 1 1) t a(i 1 1)0 t TC (i 1 1) = a(i 1 1), , {q , q , q }z 1 2 3F Gt 2Dtt

(11)

If we assume the gust excitation frequency is v and T = 2p/
v, then in a period we have N measurement points in time.

The response may be formulated in matrix form for each in-
dividual time step of j = 3 3 i(i = 1, 2, . . . , N/3).

{Z } = [Y ] {Q } (12)1 N/33 1 1 N/333 1 331

If {Z1} is from the measured lift or pitch moment coef� cient,
CL(i 1 1), CM(i 1 1), respectively, the optimized coef� cients
in {Q1} may be determined such that residual sum of squares
of {S1} becomes a minimum for all time points

{S } = {Z } 2 [Y ] {Q } (13)1 1 N/331 1 N/333 1 33 1

The condition of minimum error leads to

T T 21 Tu{S } {S } u Þ min, {Q } = ([Y ] [Y ]) [Y ] {Z } (14)1 1 1 1 1 1 1

The linear unsteady aerodynamic coef� cients, lz, dz, and
sz can be solved from the known matrix {Q1}; they are lz =
q2/(1 2 Dtq2/tt), dz = q1(1 1 Dtlz /tt), and sz = q3.

Step 2, determination of the nonlinear differential equation
coef� cients: Similar to the procedure in the linear part, the
state equations at each time step are obtained from Eq. (9):

22w [(Dt) 1 Dte t ]z z tC (i 1 1) = DC (i 1 1)z2 z2 22t 1 d t Dt 1 (Dt) wt z t z

22w [(Dt) 2 Dte t ]z z t
C (i 2 1) = DC (i 2 1)z2 z2 22t 2 d t Dt 1 (Dt) wt z t z

Let

w w ez z z
p = , p =1 22 2 2 22t 1 d t Dt 1 (Dt) w 2t 1 d t Dt 1 (Dt) wt z t z t z t z

w w ez z z
p = , p =3 42 2 2 22t 2 d t Dt 1 (Dt) w 2t 2 d t Dt 1 (Dt) wt z t z t z t z

Then at (i 1 1)th and (i 2 1)th points in time, we have

2 TC (i 1 1) = [2(Dt) DC (i 1 1), 2t DtDC (i 1 1)]{p , p }z2 z t z 1 2

(15)

2 TC (i 2 1) = [2(Dt) DC (i 2 1), t DtDC (i 2 1)]{p , p }z2 z t z 3 4

(16)

The matrix equation for each individual time step is

{Z } = [Y ] {Q } (17)2 2N/33 1 2 2N/334 2 431

where {Q2} = { p1, p2, p3, p4} and {Z2} is the difference be-
tween the measured lift or pitch moment coef� cient time his-
tory CL(i 1 1), CL(i 2 1), CM(i 1 1), CM(i 2 1) and the linear
components. They are

Z (i 1 1) = C (i 1 1) 2 C (i 1 1) 2 s t a(i 1 1)/2Dt2 z z1 z t

Z (i 2 1) = C (i 2 1) 2 C (i 2 1) 1 s t a(i 2 1)/2Dt2 z z1 z t

Using the condition of minimum error, we have

T 2 1 T{Q } = ([Y ] [Y ]) [Y ] {Z } (18)2 2 2 2 2

The nonlinear unsteady aerodynamic coef� cients, wz, dz, and
ez can be determined from the known matrix {Q2}; they are

e = p /pz 2 1

2 22t (1 2 p /p ) 2 d t Dt(1 1 p /p ) 1 (Dt) (1 2 p /p )w = 0t 1 3 z t 1 3 1 3 z

2 22t p 2 d t Dtp 1 [(Dt) p 2 1]w = 0t 1 z t 1 1 z
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Fig. 5 Time histories of the plunge motion, lift coef� cient, and
lift hysteresis loop for u0 = 20 deg and airspeed u = 25.7 m/s: a)
plunge displacement h, b) lift coef� cient CL, and c) lift hysteresis
loop plot.

Fig. 4 Time histories of the plunge motion and lift hysteresis loop
for u0 = 0 deg and airspeed u = 25.7 m/s: a) plunge displacement
h, b) variation of a, and c) lift hysteresis loop plot.

D. Experimental Results for Unsteady Aerodynamic
Coef� cients

The experimental results for the unsteady lift and pitch mo-
ment coef� cients about the mid-length are described as fol-
lows. The airspeed was kept constant at 25.7 6 0.5 m/s. The
u0 was varied between 225 and 25 deg. The sample rate is Dt
= 1/800 and the total sample number is N = 800.

1. Unsteady Lift Aerodynamic Coef� cients

In this case the gust excitation frequency was kept constant
at v = 4.29 Hz (note that vh = 4.34 Hz). First we identify the
linear unsteady aerodynamic coef� cients using zero initial
pitch angle. It is found from the static test that when u0 = 0
deg, the angle of attack at the static equilibrium state is 0 deg.
Therefore, u0 = 0 deg is taken as the reference condition and
the corresponding lift curve slope at this angle of attack is a0

= 2.99.
Figures 4a and 4b show the measured time-history signals

of the plunge displacement, h, angle of attack, a, for u0 = 0
deg. The angle of attack is dominated by the gust part and the
contribution of the plunge motion to a is smaller by compar-

ison. The gust-angle amplitude is itself small, near 1 deg (thus
the linear assumption is reasonable in this small excitation
range). The gust � eld is not a pure single harmonic wave. A
2v gust component is also observable. Because the excitation
frequency is very close to the plunge natural frequency, the
displacement response and the lift coef� cient nevertheless are
almost single harmonic. However, because the gust is not a
very steady single harmonic wave, an averaging procedure is
made in the identi� cation. We take four cycles of sample data
from the total measured signals, and then use each cycle data
to identify a set of linear and nonlinear aerodynamic coef� -
cients using Eq. (14). The average values are listed as follows:
lL = 0.195, dL = 1.615, and sL = 2.51.

From the measured time histories of lift coef� cient and angle
of attack, we can obtain the lift hysteresis loop plot as shown
in the dashed line of Fig. 4c for a 1-s time history. For com-
parison, the theoretical results using the identi� ed parameters
are also plotted in this � gure as shown by the solid line. The
agreement is reasonably good.
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Fig. 7 Pitch moment hysteresis loop plot for u0 = 20 deg and
airspeed u = 25.7 m/s.

Fig. 6 Identi� ed nonlinear aerodynamic coef� cients vs a. L and
N are from the experimental data, and ——, lift, and ---, pitch
moment lines are from curve-� tting method: a) wL, wM, b) dL, dM,
and c) eL, eM.

Figures 5a and 5b show the typical measured time-history
signals of the plunge displacement, h, and the lift coef� cient,
CL, for u0 = 20 deg. As compared with Fig. 4, the plunge
response amplitude and lift coef� cient are signi� cantly in-
creased. Figure 5c shows the comparison between the experi-
mental and theoretical results for the lift hysteresis loop. The
symbols are the same as shown in Fig. 4. The aerodynamic
hysteresis damping increases as the initial pitch angle in-
creases. The results are similar to the results for a two-dimen-
sional airfoil.10

Using Eq. (18) and various initial pitch angles, we obtain a
set of averaged nonlinear aerodynamic coef� cients. The results
are shown by the L symbol (test) and solid line (curve � tting)
in Fig. 6 for the nonlinear aerodynamic coef� cients, wL, dL,
and eL vs the static equilibrium a. These coef� cients will be
applied to a nonlinear aeroelastic analysis of this model in Sec.
IV.

2. Unsteady Pitch Moment Aerodynamic Coef� cients

The gust excitation frequency was kept constant at v = 6.2
Hz (note that vf = 6.13 Hz) for all initial pitch angles. First,
we identify the linear unsteady aerodynamic coef� cients using
a small initial pitch angle. From the static test we found the
zero initial pitch angle corresponds to a static equilibrium an-
gle of attack of 0.072 deg, which is very close to the zero
initial pitch angle. We take this point as a reference condition
and the corresponding pitch moment curve slope at this angle
of attack is bm = 0.88. We take six cycles of sample data from
the total measured signals, and then use each cycle data to
identify a set of linear and nonlinear aerodynamic coef� cients.

A set of averaged linear aerodynamic coef� cients is deter-
mined as follows: lM = 0.32, dM = 23.1, and sM = 1.2. And
nonlinear aerodynamic coef� cients, wM, dM, and eM vs the static
equilibrium a are shown by the N symbol (test) and the broken
line (curve � tting) in Fig. 6.

Figure 7 shows the typical experimental and theoretical re-
sult for the pitch moment hysteresis loop for u0 = 20 deg. The
symbols are the same as shown in Fig. 5c. The aerodynamic
hysteresis pitch damping increases with the initial pitch angle.
The agreement between the theory and experiment is good.

IV. Nonlinear Aeroelastic Analysis
Nonlinear aeroelastic analysis of this external store model

includes stability (� utter) of the linearized equations and a
nonlinear aeroelastic response (LCO) without gust excitation.
The model parameters were earlier in this paper. The plunge
and pitch natural frequencies are now vh = 1.5 Hz and vf =
2.0 Hz.

A. Stability Analysis (Flutter)

For a stability analysis of the external store model with non-
linear unsteady aerodynamics, a perturbation approach is used.
The linearized dynamic perturbation equations of the external
store system about a static equilibrium state are

¨ Ç¨ 2ˆ ˆˆ ˆ ˆh 2 S f 1 2z v h 1 v h 1 g C = 0 (19)a h h h L L

Ç¨ ¨ 2ˆ ˆ ˆ ˆˆf 2 S h 1 2z v f 1 v f 2 g C = 0 (20)h f f f M M

and the linearized dynamic perturbation equations of the aero-
dynamic model are

Çˆ ˆ ˆ ˆC = C 1 C 1 s t a (21)l z1 z2 z t

Ç Çˆˆ ˆt C 1 l C = l a â 1 t d a (22)t z1 z z1 z 0 t z

­DC ­DCz zÇ2 ¨ Çˆˆ ˆ ˆt C 1 d t C 1 w C = 2w â 2 w e t at z2 z t z2 z z2 z z z t
­a ­a

(23)



684 TANG AND DOWELL

Fig. 8 Eigenvalue solutions of the linear model for u0 = 25 deg, xm= 20.06: a) real part, c) root-locus, the arrows indicates the direction
of motion of the loci when u increases. b) and d) from the quasisteady aerodynamics.

These equations can be put into state-variable form yielding

{ Çx} 1 [!]{x} = {2} (24)

where the variable matrix {x} is expressed as a set of structural
motion and aerodynamic coef� cient variables, {x} = , , ,Ç Çˆ ˆ ˆ{h h f

, , , , , , .Ç Çˆ ˆ ˆ ˆ ˆˆ ˆf C C C C C C }L ML L M M2 21 2 1 2

The � utter critical speed is determined by solving the pre-
ceding eigenvalue problem. The solution depends on u0. Thus,
we form = , = , = , = ,¯ ¯ ¯ ¯lt lt lt ltˆ ˆ ˆˆ ˆ ˆ ˆ ˆh he f fe C C e C C eL LL L1 21 2

= , and = , and determine the eigenvalues¯ ¯lt ltˆ ˆˆ ˆC C e C C eM MM M1 21 2

l in the usual way.

B. Nonlinear Aeroelastic Response

To determine the nonlinear aeroelastic response in the time
domain, a similar perturbation procedure is used.

Let

Ç¯ ˆ ˆ¯ ˆ ˆf = f 1 f, h = h 1 h, a = ā 1 f 1 (l/u)h (25)

where and are the static equilibrium pitch angle and plunge¯ā h
displacement determined using the nonlinear algebraic Eqs. (3)
and (4), when = = = [ 0, and = 2 u0.¨ ¨ Ç ¯Çh f h f f ā

We use Eqs. (5) and (9) to calculate the transient response.
The direct numerical time integration uses a standard compu-
tational code. The integral step length is Dt = 1/100 s.

V. Numerical Investigation Results
A. Stability Analysis (Flutter)

Figure 8 shows typical eigenvalue solutions of the linearized
system [Eq. (24)] for u0 = 25 deg and xm = 20.06. Figure 8a
presents the real part of the eigenvalue, l, vs the � ow velocity.
We � nd there are two intersections with the velocity axis. One
is for uf = 28.5 m/s, and another is for uA = 58.5 m/s; uf is the
critical � utter velocity with a corresponding � utter oscillatory
frequency, vf = 9.8 rad/s, and uA is called a higher-order � utter

velocity with a corresponding oscillatory frequency, vA = 8.4
rad/s. Figure 8c is a root-locus plot that indicates that the � ut-
ter is dominated by the plunge motion for the � rst critical
velocity and by the pitch motion for the second critical veloc-
ity. Results from a simpler quasisteady aerodynamic model
(Figs. 8b and 8d), are also plotted. The critical � utter velocity
is now 30.75 m/s, which is dominated by the plunge motion.

Figure 9 shows the � utter velocity vs the initial pitch angle
u0 for xm = 20.66. The N symbol indicates the results from the
quasisteady aerodynamics, and the L and n symbols indicate
the results from unsteady aerodynamics. The results show
good agreement in the range of u0 = 25 to 2.5 deg. Beyond
this range there is a large quantitative difference, particularly
at the larger initial pitch angles. One may conclude that the
effect of unsteady aerodynamics on the � utter instability is
signi� cant for the larger angles of attack.

B. Nonlinear Aeroelastic Response

Results for the quasisteady case: Figure 10a shows the limit
cycle pitch amplitude (peak) vs � ow velocity for an initial
angle of u0 = 25 deg. At u = 30.51 m/s (recall that u = 30.5
m/s is the critical � utter velocity of the linearized system), the
pitch amplitude of limit cycle oscillation (LCO) is = 2.75f̂
deg. The pitch amplitude of LCO increases with the � ow ve-
locity. A typical time history of LCO for u = 30.52 is shown
in Fig. 11. The motion is a pure single harmonic oscillation.
Corresponding to the LCO motion, the oscillating frequency
is shown in Fig. 10b. The frequency varies from 1.612 to 1.722
Hz for u = 30.51– 35 m/s, which is between the plunge (vh =
1.5 Hz) and pitch (vf = 2 Hz) natural frequencies.

Figure 12 shows a limit cycle pitch amplitude (rms) vs � ow
velocity for an initial angle of u0 = 10 deg. Compared to Fig.
10a, there is a rapid increase of the amplitude near the linear
critical � utter velocity (ucr = 45 m/s). When u = 44.9 m/s, the
system is stable and tends to a static equilibrium position.
When u = 45 m/s, the system tends to a LCO with a larger
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Fig. 9 Linear � utter solutions vs initial pitch angle for xm =
20.06, N, results from the quasisteady aerodynamics; and n and
L, from unsteady aerodynamics.

Fig. 10 Pitch LCO vs � ow velocity for u0 = 25 deg, xm= 20.06
using quasisteady aerodynamics: a) amplitude of LCO and b) fre-
quency.

Fig. 11 Time history of the pitch response for u0 = 25 deg, u =
30.52 m/s.

Fig. 12 Pitch amplitude (rms) of LCO vs � ow velocity for u0 =
10 deg, xm= 20.06 using quasisteady aerodynamics.

Fig. 13 Motion behavior of the pitch LCO for u0 = 10 deg, xm=
20.06 using quasisteady aerodynamics: a) time history and b)
Poincare map plot.

amplitude, as shown in Fig. 13a of the time history. The steady
motion is almost periodic with a dominant frequency (1.66 Hz)
and higher harmonic components (multiples of fundamental
frequency). This behavior can be seen from the Poincare map
for [ 0 (Fig. 13b). In Fig. 13b the map points are concen-Çh
trated in two ranges. Because the Poincare section is taken
when [ 0 (Fig. 13b), there are two points for one cycle inÇh
the map. When u > 51 m/s, the system is divergent.

Results for the unsteady case: With unsteady aerodynamics,
the LCO behavior is not observed for all initial pitch angles
as was seen for the quasisteady case. Now LCO is found only
for the higher initial pitch angles (u0 > 8 deg) and, otherwise,
the motion is divergent when u $ ucr or tends to a static equi-
librium position when u < ucr. Figure 14 shows a limit cycle
pitch amplitude (rms) vs � ow velocity for an initial angle of
u0 = 10 deg. It is very clear there is a jump in response at the
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Fig. 14 Pitch amplitude (rms) of LCO vs � ow velocity for u0 =
10 deg, xm= 20.06 using unsteady aerodynamics.

Fig. 15 Motion behavior of the pitch LCO for u0 = 10 deg, xm=
20.06 using unsteady aerodynamics: a) time history and b) Poin-
care map plot.

Fig. 16 Motion behavior of the pitch LCO for u0 = 12.5 deg, xm

= 20.06 using unsteady aerodynamics: a) power spectral density
plot and b) Poincare map plot.

linear critical � utter velocity (ucr = 25.4 m/s). There is no LCO
with a smaller amplitude and the LCO amplitude varies only
slightly in the velocity range (25.4 m/s < u < 30.4 m/s). Com-
pared to the quasisteady case for the same initial pitch angle,
the � ow velocity for the LCO response decreases from (45 to
25.4 m/s) and the steady LCO motion becomes more complex.
The unsteady aerodynamics, particularly the stall equations,
play an important role in the aeroelastic response. Figure 15a
shows the time history of pitch motion for u = 25.4 m/s (min-
imum � ow velocity for the onset of LCO). The transient pro-
cess is quite long (about 2600 s) before the steady LCO motion
is reached. The Poincare map for [ 0 is shown in Fig. 15b.Çh
Two frequency components are signi� cant. One is associated
with the structural motion (plunge) with a frequency of 1.63
Hz and another with the coupling between the aerodynamic
pitch moment and structural pitch motion, 2.2 Hz. Because of
the stronger second component and hysteresis aerodynamics,

the Poincare map also becomes more complex. When the � ow
velocity increases beyond 25.4 m/s, the steady-state LCO mo-
tion changes only slightly but the transient process becomes
shorter. For example, when u = 30 m/s, the transient is of about
50 s duration.

When we increase initial pitch angle further, say to u0 =
12.5 deg, the coupling between the aerodynamic pitch moment
and structural pitch motion becomes stronger as shown in the
power spectral density plot (Fig. 16a). The magnitude of this
component is almost equal to the � rst frequency component.
The motion, now dominated by the nonlinear aerodynamics,
becomes chaotic-like, as shown in Fig. 16b, the Poincare map.

VI. Concluding Remarks
This paper describes an innovative numerical procedure to

determine quasisteady and unsteady aerodynamic coef� cients
of an external store of an aircraft. The experimentally identi-
� ed unsteady aerodynamic model is then used to calculate the
nonlinear aeroelastic response.

1) The new experimental method proposed by the present
paper is an ef� cient and low-cost technique to identify the
unsteady, separated-� ow aerodynamic coef� cients for a com-
plex store structure of an aircraft. The results are veri� ed by
the good correlation between theoretical prediction and aero-
dynamic measurement.

2) Using the experimentally identi� ed unsteady aerody-
namic model to calculate the stability (� utter) and nonlinear
aeroelastic response, it is shown that there is a large difference
with the results obtained from the quasisteady aerodynamic
model, particularly for the larger initial pitch angles. For an
aircraft with an external store structure and at a high angle of
attack, the unsteady aerodynamic model should be considered.

3) A smaller LCO amplitude is predicted to occur for the
unsteady aerodynamic model than that for the quasisteady
model beyond the linear � utter velocity. However, the limit
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cycle amplitude predicted was so large that, because of safety
concerns, no LCO experiments were done with the aeroelastic
wind-tunnel model.
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