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Unsteady Aerodynamic Forces and Aeroelastic Response
for External Store of an Aircraft

Deman Tang* and Earl H. Dowellf
Duke University, Durham, North Carolina 27708-0300

An experimental identification investigation of unsteady and stall aerodynamic coefficients for an ex-
ternal store of an aircraft has been made. The coefficient identification is performed by a least-squares
procedure based on the measured time series obtained from an aeroelastic model undergoing aerodynamic
excitation caused by a gust generator. The results are verified by the good correlation between the the-
oretical prediction and aerodynamic measurement data. Using the identified unsteady aerodynamic model,
numerical investigations for both the stability (flutter) and nonlinear aeroelastic response of this external
store model have been made. Also, the results were compared with those obtained from a quasisteady
aerodynamic model. It is seen that the effects of unsteady aerodynamics on the nonlinear aeroelastic
response are significant when the angle of attack is large.

Nomenclature
ag = linear lift curve slope
b, = linear pitch moment curve slope
C,, C, = plunge and pitch moment structural damping
coefficients
C,, C,y = nondimensional lift and pitch moment

coefficients, L/gSo, M./1qS,, respectively
C., Cy, = nondimensional linear lift and pitch moment

coefficients

C.,, Cy, = nondimensional nonlinear lift and pitch moment
coefficients

h = dimensional and nondimensional plunge

displacement, A/l

J. = moment of inertia about the elastic axis

K, = stiffness of store model in plunge deflection

K, = pitch stiffness of store model about the elastic
axis

k = reduced frequency, =wl/2u

L = lift force

) = length of the store model

M, = pitch moment about the elastic axis

m = total mass, m,, + m;

m,, = store model mass

mg = support system mass

q = dynamic pressure, 3pu’

Ro = maximum cross-sectional radius of the external
store model

So = =7R;}

t = time

t. = [/u, a reference time

u = flow velocity

Uer = critical flutter velocity

X, x,, = distance of the c.g. from the elastic axis,
X = Xl

a = angle of attack

oG = gust angle

At = time step

{n Cy = plunge and pitch moment modal damping ratios

0o = initial pitch angle
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A = eigenvalue matrix
Mg, N; = real and imaginary part of the eigenvalue
= normalized axial distance measured from the tip
of model, x/R,

p = air density

b = pitch displacement

® = frequency

w;,, wy = plunge and pitch moment natural frequencies
Superscripts

@) = d()/dr

~ = perturbation variable

- = static equilibrium position

I. Introduction

IMIT cycle oscillations (LCOs) have been observed in

aeroelastic systems including full-scale aircraft, wind-tun-
nel models and, of course, in theoretical/numerical models."”
Structural nonlinearities such as freeplay and geometric
(strain-displacement) effects have been studied in detail and
good correlation between theory (based upon the first princi-
ples of mechanics) and experiment has given substantial con-
fidence in our understanding of these effects. In contrast, aero-
dynamic nonlinearities caused by flow separation still are not
describable from theoretical first principles, although a sub-
stantial body of experimental data and techniques exists along
with useful semiempirical theoretical models.

In the present paper flow separation is modeled using pres-
ently available techniques to describe the oscillating flow
around a representative external store of an aircraft. Using a
semiempirical aerodynamic model, the aeroelastic LCOs are
calculated that result from flow separation. The results suggest
that flow separation at low Mach numbers alone leads to very
large LCOs.

Earlier experimental studies for oscillating two-dimensional
airfoils have provided a great deal of important information on
the physical mechanisms involved in dynamic stall.” "> Usually
the airfoil was instrumented with several pressure taps along
the airfoil surface. The instantaneous pressure data were then
obtained using a set of upper and lower pressure taps and
corresponding pressure transducers. The integrated pressure re-
sults are normally presented in the body-fixed coordinate sys-
tem and the resultant integrated loads represented by the pitch-
ing moment, C,, the normal-force coefficient, Cn, and the
axial-force coefficient, C,. The airfoil pitch motion or com-
bined translation/pitch motion is often driven by a mechanical
system. This experimental method has been successful for both
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Fig. 1 Photograph of the experimental setup.

two- and three-dimensional airfoils and wings. However, for
an external store of the aircraft, a dynamic pressure measure-
ment becomes very difficult because many pressure taps and
corresponding transducers would be needed for the complex
store structure.

In the present paper a new experimental method is proposed
based upon aerodynamic excitation of an aeroelastic system by
a gust generator'* instead of by a mechanical driving system.
This gust generator is used to produce a near single harmonic
fluid wave in the lateral direction in a wind tunnel, but normal
to the model (Fig. 1). The experimental external store model
is a simple aeroelastic model with one degree of freedom in
plunge or pitch motion. The global lift force or pitch moment
acting on the external store is a function of the structural mo-
tion as well as the gust field. Thus we can obtain a set of
aerodynamic forces from the measured responses (displace-
ment, velocity, and acceleration) for a given gust field. Similar
to the ONERA semiempirical theoretical model'' for dynamic
stall aerodynamics, we use the measured aeroelastic response
data to identify a system of differential equations relating the
aerodynamic forces to the gust field.

Using the identified unsteady aerodynamic model, a com-
parison between the predictions of a theoretical unsteady and
a quasisteady aerodynamic model for the nonlinear aeroelastic
response of the store has been made.

II. Experiment Description

All tests of an external bomb carriage model were performed
in the Duke University low-speed wind tunnel. The wind tun-
nel is a closed-circuit tunnel with a test section of 2.3 X 1.66
ft* and a length of 4 ft. For the present test the Reynolds
number based upon model length was 0.52 X 10° and the k
was varied up to a value of 0.385. The experimental apparatus
of the external store model with gust excitation system in the
wind tunnel is shown in Fig. 1.

The external store used in this study is a basic carriage
model without bombs or rocket-launchers. The geometry of
the paraboloidal forebody is described by the following fourth-
order polynomial'’

R/R, = —0.04365* + 0.3158% — 0.962¢% + 1.507¢ + 0.0028

The model is made of an aluminum alloy material. The axial
c.g. can be adjusted by adding or subtracting a balance weight
from the afterbody of this model. A piece of ground steel bar
with a cross section 3/8 in. in diameter and 23 in. in length is
passed through the half-length point of the model and welded
into this model at the middle of this bar. The ends of the bar
are connected to a support system mounted outside of the wind

tunnel, at the top and bottom. The support mechanism at each
end of the aeroelastic model is a bicantilever beam made of
two steel leaf springs that are 203.2 mm long, 28.6 mm wide,
and 1.02 mm thick. The distance between the two cantilever
beams is 152.4 mm. A support block joins the free ends of the
bicantilevered beams on both top and bottom and is free to
move in the plunge direction. The two support blocks are the
only parts of the support mechanism that move with the model,
and this motion is restricted to the plunge degree of freedom.
The pitch axis (steel bar) of this external store model is
mounted to the upper and lower support blocks through a pair
of precision bearings that have a small amount of dry friction
in the ball. This design allows the model to have a pitch motion
that is independent of the plunge degree of freedom. At the
upper bracket there is a spring wire inserted tightly into the
pitch axis of the model. The ends of the spring wire are simply
supported on the bracket, which provides an adjustable pitch
stiffness.

The pitch angle of the model is measured by a rotational
velocity/displacement transducer (RVDT), which is fixed at the
upper end of the pitch axis. The plunge displacement is mea-
sured using another RVDT that measures the motion of the
upper support block. A microaccelerometer is mounted on the
afterbody of this model that is used to measure the pitch angle
acceleration and another accelerometer is mounted on the up-
per support block to measure the plunge motion acceleration.

The lateral gust velocity u, (or, hence, o, which is equal to
u,/u) was measured with a differential pressure probe mounted
on a bar located near the external store model. The bar was
attached to a stand fixed on a support table. The pressure probe
consisted of two tubes, or claws, oriented at 90 deg to one
another in the horizontal plane for measuring the lateral gust.
The ends of the tubes protruded from a slender aerodynamic
housing, which was oriented in the wind tunnel such that the
angle between the tubes was bisected by the freestream. The
tubes were connected to a +0.18-psi differential pressure
transducer located outside of the wind tunnel that measured
the pressure difference in the lateral direction. For the calibra-
tion of this pressure probe, see Ref. 14.

Outputs from these transducers were amplified and sent to
an SD 380 signal analyzer and directly recorded on a Macin-
tosh Ilci computer through a data-acquisition package, NB-
MIO-16, and data-acquisition and analysis software, Lab-
VIEW. To obtain a comparison of the theory with the test, a
measurement system calibration was completed before the
wind-tunnel test. The dynamic calibration coefficients were de-
termined by a ground vibration test. The following is a com-
plete listing of the system parameters for the experimental
model: R, = 0.025 m, [ = 0.268 m, w, = 4.34 Hz, v, = 6.13
Hz, {, = 0.008, {, = 0.021, J. = 0.00844 kg m>, m,, (model)
= 0.91 kg, m, (supports) = 1.083 kg, m (total) = 1.993 kg, K,
1480.96 kg/s*, and K, = 12.543 kg m?/s’.

The gust generator consists of an aluminum frame that holds
a maximum of two vanes and a motor drive system as shown
in Fig. 1. For details of the gust generator, see Ref. 14.

III. Differential Equation Modeling
of Unsteady Aerodynamics

A. Perturbed Dynamic Store Equation About
a Steady Equilibrium

A two-dimensional linear (typical section) structural model
of the bomb carriage is analyzed to investigate linear system
stability and nonlinear aeroelastic response resulting from non-
linear (flow separation) aerodynamic forces. Figure 2 shows a
sketch of the test setup. The (nonlinear) equations of motion
are

&*h b dh
> mme > + Ch + Khh =—L (1)
dt” dr dt

m
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4

Fig. 2 Sketch of the two-dimensional external store carriage
model.

&’ &h dd
J—-mX,— + Cy, — + K, =M, 2
PTG dr? *dr +® )

where X, is the distance of the elastic axis from the body tip
of the model.

Equations (1) and (2) may be written in nondimensional
form as

h— S.b + 20w + wih = —v,.C,. (3)
dﬁ — S, + 2§¢w¢<ﬁ + 0wy = Y Cur “4)
where
h = hll, X = Xl

2
Sa = Mm,X,Im, Sp = mx, 1],

Yo = qSolml, Yae = qSollJ.

For small-amplitude motion, a perturbation procedure is
used. .

Letb=db+ b, h=h+handa=da+ b+ (/wh + g,
where & and h are the static equilibrium pitch angle and plunge
displacement that are determined using the nonlinear algebraic
Eqs. (3) and (4), whenh=p=h=¢ =0, =a — 0, and
o is the gust excitation angle.

Equations (3) and (4) can then be replaced by a set of non-
linear dynamic equations about the static equilibrium position

fl. — Su(; + 2@;,(.0/,}; + (D;.;hA = _'YLCL(OL, o) (5)

& — Sph + 20,00h + 03¢ = yuCorlar, &) ©)

Equations (5) and (6) can be used to calculate the aerody-
namic coefficients from the measured static and dynamic re-
sponse data. To improve the accuracy of the measured re-
sponse data, we consider two cases independently, i.e., in Eq.
(5) b = 0 but 4 # 0, and in Eq. (6) # = 0 but ¢ # 0. Thus
we use two independent equations to determine the lift and
pitching moment, respectively.

Similar to the two-dimensional ONERA aerodynamic model
equations, these lift and pitch moment coefficients can be de-
termined from the following first- and second-order differential
equations. For simplicity in expression, we use a subscript z
to represent both the lift, C;, and pitch moment, C,, and cor-
responding aerodynamic coefficients

C.=C, + C, + s.t.d 7)
t.Ci + NC. = Naoa + £.5.0 (8)
£Co+ dt,Co+ 0.Co= —w(AC. + et,AC.)  (9)

where #, and {/u and AC. = (JAC./da)di.

The form of Eqgs. (7-9) is hypothesized heuristically and
has been shown to represent the essential elements of some
dynamic stall phenomena."

In this paper quasisteady aerodynamics means that the re-
lationship between C, and « is simply the static one, whereas
unsteady means that the relationship between C; and « is given
by Egs. (7-9). Note, however, that both models use Eqgs. (5)
and (6), which itself invokes a quasisteady relationship among
a, ¢, and h. To make the ONERA model truly unsteady, it
would be necessary to separately and distinctly account for the
effects of ¢ (and &) on the one hand and & on the other. We
note that some authors, e.g., Tobak,'® have made this distinc-
tion in their models.

B. Determination of Static Aerodynamics

Using Egs. (5) and (6), we measure the static plunge dis-
placement and pitch angle to determine the static lift and pitch
moment for several initial pitch angles, 6,, when the pertur-
bation responses are zero (there is no gust excitation). The
static lift and pitch moment coefficients are nonlinear for the
whole measurement range of the initial pitch angle 6o = —25
to 25 deg (see Fig. 3 for an airspeed of u = 25.7 m/s). In Fig.
3 the symbol & denotes the experimental data and the solid
line the results from a curve fitting method. Similar results for
C,, are also obtained. Note that the experimental data are time-
averaged values. Because of turbulent wake vortices, there are
slight fluctuations about the static value that increase with the
initial pitch angle even when there is no gust excitation.

From the quasistatic aerodynamic coefficients, we choose a
reference condition, say, o = 0.

Let ao = (dC.o/da) | —o.

Then the static lift (or pitch moment) coefficient C., is de-
fined to have two domains: the linear part, C.o = aoor and the
nonlinear part, C_, = a,a + AC_, where AC. is the difference

2.5 T T T T T
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a) Angle of Attack (deg)

01 e ACw 4

Static Pitch Moment
<
T

0.2 | b
03 - -
0.4 - —
05 1 L i L 1
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b) Angle of Attack (deg)

Fig. 3 Experimental and curve-fitting static aerodynamic coef-
ficients vs a. O from the experimental data and —— from
curve-fitting method: a) lift (C,) and b) pitch moment about mid-
length (C,).
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between the linear characteristic extended up to the maximum
incidence and the true lift (or pitch moment) coefficient C.,

0 if o= a,
AC. = {aoa — C,, otherwise 10)

C. Identification of Unsteady Aerodynamic Coefficients

Equations (5-9) represent the coupling of the unsteady aero-
dynamics with the structural response. For determination of
the aerodynamic coefficients, an identification technique in the
time domain and a least-squares procedure (LSP) is proposed.
The method is described in the following text.

Consider a measured time history, x(¢), with a constant sam-
pling time step length, Az. The sampled version of x(¢) is then
defined by

x(i) = x[(i — DAz] i=1,2,...,N
The total time 7T is given by
T=(N — 1)At

The velocity and acceleration of this time series can be derived
by three-point formulas:

X(@) = (1R2ADxG + 1) — x(i — 1)]
#G) = [LIAD[xG — 1) — 2x() + x( + 1)]

From Egs. (5) and (6) we can obtain the time-series data of
the lift and the pitch moment coefficients C,(i) and C,(i) for
a given airspeed, u, and initial pitch angle, 6, Note that to
improve accuracy we directly use the measured acceleration
signal that is passed through a low-pass filter and the velocity
is obtained using a three-point formula in our experiment.

The identification procedure includes two steps.

Step 1, determination of the linear differential equation co-
efficients: Set the experimental model to have a zero initial
pitch angle and the airspeed at some fixed value, say, u = 25.7
m/s. The gust excitation frequency is set very close or equal
to the plunge (or pitch) natural frequency. Then we measure
the plunge (or pitch) displacement and acceleration signals of
this model and the gust lateral velocity. From Eq. (8), one has

1.8 /2At + N\.a,/2

C,i+1)= i + 1
At D= e it
—.8.12A1 + N.ao/2 .
Cli—1) = B o _
Al D= o D
. . LS. .
Ci+1)=C,,i+1)+ A7 ali +1)
C('—l)—C('—l)—thZ Gi—-1
(i = C,4(i A a(i
Let
I VR I S _
DET T A T A BT
Then at (i + 1)th point in time, we have
. . agAta(i+ 1) ta(i+1)
CGi+ 1)=|:0L(l+ 1), ° P s AL :|{Q1,Q2,Q3}T

(11

If we assume the gust excitation frequency is w and T = 2/
, then in a period we have N measurement points in time.

The response may be formulated in matrix form for each in-
dividual time step of j =3 X i(i=1,2,..., N/3).

{ZI}N/3><1 = [YI]N/3><3{Q1}3><1 (12)

If {Z,} is from the measured lift or pitch moment coefficient,
C.(i + 1), Cy(i + 1), respectively, the optimized coefficients
in {Q:} may be determined such that residual sum of squares
of {S,} becomes a minimum for all time points

{Sl} = {ZI}N/3><1 - [YI]N/3><3{Q1}3><1 (13)

The condition of minimum error leads to

|{S1}T{S1}| = min, {0} = ([YI]T[YI])il[YI]T{Zl} (14)
The linear unsteady aerodynamic coefficients, N, 8. and
s, can be solved from the known matrix {Q,}; they are A, =
/(1 — Atq,lt.), 8. = q,(1 + At\_/t.), and 5. = gs.
Step 2, determination of the nonlinear differential equation
coefficients: Similar to the procedure in the linear part, the
state equations at each time step are obtained from Eq. (9):

—w [(A1)” + Atet]

CLi+1)= AC.(i + 1
i ) 212 4+ d.t. At + (Ar)w, A )
—w [(At)> — Ate.t]
Coli — 1) = Av L] o
20 =1 212 — d.t. At + (Ar)Pw, =D
Let
— WZ — WZeZ
P e T A+ Aorwe PPT 22 ¥ daAr + (Ao,
w, w.e.
ps = Pa=

212 — dt. At + (At’w, 217 — dt. At + (At)’w,
Then at (i + 1)th and (i — 1)th points in time, we have

Coi + 1) = [—(AD’ACG + 1), —t,AtAC( + DI{py, pa}”

15)
Cali = 1) = [-(A°ACG — 1), £,ATAC(i = DI{ps, pa}”
(16)
The matrix equation for each individual time step is
{Z2}2mrsx1 = [Yalawsxa{ Q2}ax 17)

where {Q>} = {p1, P2 P3, pa} and {Z,} is the difference be-
tween the measured lift or pitch moment coefficient time his-
tory C,(i + 1), C.(i — 1), Cpli + 1), Cp(i — 1) and the linear
components. They are
Z(+ 1D=Cli+1)— C,i +1)— stali + 1)/2At
Z(i— 1)=Ci — 1) — C,(i — 1) + st,ai — 1)/2At
Using the condition of minimum error, we have

{Qz} = ([Yz]T[Yz])il[Yz]T{Zz} (18)

The nonlinear unsteady aerodynamic coefficients, w_, d_, and
e, can be determined from the known matrix {Q,}; they are

ez=p2/p1
202(1 = pi/pa) — dt, AL + pilps) + (AD*(1 — pi/paw. =0

2e2p, — d.t.Atp, + [(A°p, — 1w, =0
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D. Experimental Results for Unsteady Aerodynamic
Coefficients

The experimental results for the unsteady lift and pitch mo-
ment coefficients about the mid-length are described as fol-
lows. The airspeed was kept constant at 25.7 = 0.5 m/s. The
0o was varied between —25 and 25 deg. The sample rate is At
= 1/800 and the total sample number is N = §00.

1. Unsteady Lift Aerodynamic Coefficients

In this case the gust excitation frequency was kept constant
at w = 4.29 Hz (note that w, = 4.34 Hz). First we identify the
linear unsteady aerodynamic coefficients using zero initial
pitch angle. It is found from the static test that when 6o = 0
deg, the angle of attack at the static equilibrium state is 0 deg.
Therefore, 8, = 0 deg is taken as the reference condition and
the corresponding lift curve slope at this angle of attack is a,
=2.99.

Figures 4a and 4b show the measured time-history signals
of the plunge displacement, h, angle of attack, a, for 6, = 0
deg. The angle of attack is dominated by the gust part and the
contribution of the plunge motion to « is smaller by compar-
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-0.0005
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0.4 0.6 0.8 1
a) Time (Sec.)

Variation of Incidence Angle (deg)

_15 1 I 1
0 02 0.4 0.6 0.8 1
b) Time (Sec.)
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-0.09

-0.11 |
-0.12 |
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-0.14 -

-0.15 -

-0.16 = .
-1.5 -1 -0.5 0 0.5 1 1.5
c) Angle of Attack (deg)

Fig.4 Time histories of the plunge motion and lift hysteresis loop
for 0, = 0 deg and airspeed u = 25.7 m/s: a) plunge displacement
h, b) variation of «, and c) lift hysteresis loop plot.

ison. The gust-angle amplitude is itself small, near 1 deg (thus
the linear assumption is reasonable in this small excitation
range). The gust field is not a pure single harmonic wave. A
2w gust component is also observable. Because the excitation
frequency is very close to the plunge natural frequency, the
displacement response and the lift coefficient nevertheless are
almost single harmonic. However, because the gust is not a
very steady single harmonic wave, an averaging procedure is
made in the identification. We take four cycles of sample data
from the total measured signals, and then use each cycle data
to identify a set of linear and nonlinear aerodynamic coeffi-
cients using Eq. (14). The average values are listed as follows:
A, =0.195,3,=1.615,and 5, = 2.51.

From the measured time histories of lift coefficient and angle
of attack, we can obtain the lift hysteresis loop plot as shown
in the dashed line of Fig. 4c for a 1-s time history. For com-
parison, the theoretical results using the identified parameters
are also plotted in this figure as shown by the solid line. The
agreement is reasonably good.
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Fig. 5 Time histories of the plunge motion, lift coefficient, and
lift hysteresis loop for 0, = 20 deg and airspeed u = 25.7 m/s: a)
plunge displacement A, b) lift coefficient C,, and c) lift hysteresis
loop plot.
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Figures 5a and 5b show the typical measured time-history
signals of the plunge displacement, i, and the lift coefficient,
C,, for 8, = 20 deg. As compared with Fig. 4, the plunge
response amplitude and lift coefficient are significantly in-
creased. Figure 5c shows the comparison between the experi-
mental and theoretical results for the lift hysteresis loop. The
symbols are the same as shown in Fig. 4. The aerodynamic
hysteresis damping increases as the initial pitch angle in-
creases. The results are similar to the results for a two-dimen-
sional airfoil."

Using Eq. (18) and various initial pitch angles, we obtain a
set of averaged nonlinear aerodynamic coefficients. The results
are shown by the ¢ symbol (test) and solid line (curve fitting)
in Fig. 6 for the nonlinear aerodynamic coefficients, w,, d,,
and e, vs the static equilibrium «. These coefficients will be
applied to a nonlinear aeroelastic analysis of this model in Sec.
Iv.

Nonlinear Coefficients

-30 -20 -10 0 10 20 30
a) Angle of Attack (deg)

Nonlinear Coefficients

0 ] 1 1 1
-30 -20 -10 0 10 20 30
Angle of Attack (deg)

b}

0.1 [— _

Nonlinear Coefficients
(o]

03+ ; RN
e I | 1 L

-30 -20 -10 0 10 20 30
c) Angle of Attack (deg)

Fig. 6 Identified nonlinear aerodynamic coefficients vs a. & and
O are from the experimental data, and ——, lift, and ---, pitch
moment lines are from curve-fitting method: a) w,, was b) d,, day
and ¢) e, €,y
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-0.08
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-O. ] 2 1 13 i |
18 19 20 21 22 23
Angle of Attack (deg)

Fig. 7 Pitch moment hysteresis loop plot for 6, = 20 deg and
airspeed u = 25.7 m/s.

2. Unsteady Pitch Moment Aerodynamic Coefficients

The gust excitation frequency was kept constant at w = 6.2
Hz (note that w, = 6.13 Hz) for all initial pitch angles. First,
we identify the linear unsteady aerodynamic coefficients using
a small initial pitch angle. From the static test we found the
zero initial pitch angle corresponds to a static equilibrium an-
gle of attack of 0.072 deg, which is very close to the zero
initial pitch angle. We take this point as a reference condition
and the corresponding pitch moment curve slope at this angle
of attack is b,, = 0.88. We take six cycles of sample data from
the total measured signals, and then use each cycle data to
identify a set of linear and nonlinear aerodynamic coefficients.

A set of averaged linear aerodynamic coefficients is deter-
mined as follows: Ay, = 0.32, 8,, = —3.1, and s,, = 1.2. And
nonlinear aerodynamic coefficients, w,, d,, and e,, vs the static
equilibrium « are shown by the O symbol (test) and the broken
line (curve fitting) in Fig. 6.

Figure 7 shows the typical experimental and theoretical re-
sult for the pitch moment hysteresis loop for 6, = 20 deg. The
symbols are the same as shown in Fig. 5c. The aerodynamic
hysteresis pitch damping increases with the initial pitch angle.
The agreement between the theory and experiment is good.

IV. Nonlinear Aeroelastic Analysis
Nonlinear aeroelastic analysis of this external store model
includes stability (flutter) of the linearized equations and a
nonlinear aeroelastic response (LCO) without gust excitation.
The model parameters were earlier in this paper. The plunge
and pitch natural frequencies are now w;, = 1.5 Hz and w, =
2.0 Hz.

A. Stability Analysis (Flutter)

For a stability analysis of the external store model with non-
linear unsteady aerodynamics, a perturbation approach is used.
The linearized dynamic perturbation equations of the external
store system about a static equilibrium state are

i = S.b + 20,00 + 02h + .6, =0 (19)

b — Suh + 20,00 + 03¢ — YuCr=0 (20)

and the linearized dynamic perturbation equations of the aero-
dynamic model are

Ci=C.+ Co+ sita @21
1.6 + ANCa = Mao@ + 15,6 (22)
- R . AC. AC. ;
e 4 dtCot wlam —w 228 g ey 884
Ja Ja

(23)
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These equations can be put into state-variable form yielding

{x} + [41{x} = {0} (24)
where the variable matrix {x} is expressed as a set of structural
motion and aerodynamlc coefficient variables, {x} = {A, h, c]S
d) CL, C,q, C,ﬁ, Chy Ciy CM}

The flutter critical speed is determined by solving the pre-
ceding eigenvalue problem. The solution depends on 0o. Thus,
we form h = he*' ¢ = &e*', CL = Ce, C,, = Ce",
CM. = CMe s and CM = CMe , and determme the eigenvalues
N in the usual way.

B. Nonlinear Aeroelastic Response

To determine the nonlinear aeroelastic response in the time
domain, a similar perturbation procedure is used.

Let

db=¢b+db,  h=h+h a=a+ b+ Uwh (25)
where & and / are the static equilibn’um pitch angle and plunge
displacement determined using the nonlinear algebraic Eqs. (3)
and 4), whenh=b=lhi=¢ =0,and p = & — 0o

We use Eqgs. (5) and (9) to calculate the transient response.
The direct numerical time integration uses a standard compu-

tational code. The integral step length is A = 1/100 s.

V. Numerical Investigation Results

A. Stability Analysis (Flutter)

Figure 8 shows typical eigenvalue solutions of the linearized
system [Eq. (24)] for 8, = —5 deg and x,, = —0.06. Figure 8a
presents the real part of the eigenvalue, A, vs the flow velocity.
We find there are two intersections with the velocity axis. One
is for u;= 28.5 m/s, and another is for u, = 58.5 m/s; u,is the
critical flutter velocity with a corresponding flutter oscillatory
frequency, w,= 9.8 rad/s, and u, is called a higher-order flutter

velocity with a corresponding oscillatory frequency, w. = 8.4
rad/s. Figure 8c is a root-locus plot that indicates that the flut-
ter is dominated by the plunge motion for the first critical
velocity and by the pitch motion for the second critical veloc-
ity. Results from a simpler quasisteady aerodynamic model
(Figs. 8b and 8d), are also plotted. The critical flutter velocity
is now 30.75 m/s, which is dominated by the plunge motion.

Figure 9 shows the flutter velocity vs the initial pitch angle
0, for x,, = —0.66. The O symbol indicates the results from the
quasisteady aerodynamics, and the ¢ and /A symbols indicate
the results from unsteady aerodynamics. The results show
good agreement in the range of 0, = —5 to 2.5 deg. Beyond
this range there is a large quantitative difference, particularly
at the larger initial pitch angles. One may conclude that the
effect of unsteady aerodynamics on the flutter instability is
significant for the larger angles of attack.

B. Nonlinear Aeroelastic Response

Results for the quasisteady case: Figure 10a shows the limit
cycle pitch amplitude (peak) vs flow velocity for an initial
angle of 6, = —5 deg. At u = 30.51 m/s (recall that u = 30.5
m/s is the critical flutter velocity of the linearized system), the
pitch amplitude of limit cycle oscillation (LCO) is & = 2.75
deg. The pitch amplitude of LCO increases with the flow ve-
locity. A typical time history of LCO for u = 30.52 is shown
in Fig. 11. The motion is a pure single harmonic oscillation.
Corresponding to the LCO motion, the oscillating frequency
is shown in Fig. 10b. The frequency varies from 1.612 to 1.722
Hz for u = 30.51-35 m/s, which is between the plunge (w, =
1.5 Hz) and pitch (w, = 2 Hz) natural frequencies.

Figure 12 shows a limit cycle pitch amplitude (rms) vs flow
velocity for an initial angle of 0, = 10 deg. Compared to Fig.
10a, there is a rapid increase of the amplitude near the linear
critical flutter velocity (4. = 45 m/s). When u = 44.9 m/s, the
system is stable and tends to a static equilibrium position.
When u = 45 m/s, the system tends to a LCO with a larger
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Fig. 8 Eigenvalue solutions of the linear model for 6,= —5 deg, x,,,= —0.06: a) real part, c) root-locus, the arrows indicates the direction

of motion of the loci when u increases. b) and d) from the quasisteady aerodynamics.
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Fig. 9 Linear flutter solutions vs initial pitch angle for x,, =
—0.06, O, results from the quasisteady aerodynamics; and /\ and
¢, from unsteady aerodynamics.
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Fig. 11 Time history of the pitch response for 0, = —5 deg, u =
30.52 m/s.
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1.5 T
amplitude, as shown in Fig. 13a of the time history. The steady
motion is almost periodic with a dominant frequency (1.66 Hz) Lr ]
and higher harmonic components (multiples of fundamental < 05 L 4
frequency). This behavior can be seen from the Poincare map £
for h = 0 (Fig. 13b). In Fig. 13b the map points are concen- 5 0 7
trated in two ranges. Because the Poincare section is taken 5 os | i
when h = 0 (Fig. 13b), there are two points for one cycle in E '
the map. When u# > 51 m/s, the system is divergent. 1+ s
Results for the unsteady case: With unsteady aerodynamics,
the LCO behavior is not observed for all initial pitch angles L3 : ]
as was seen for the quasisteady case. Now LCO is found only 2 | | ! ! i : L !
for the higher initial pitch angles (6, > 8 deg) and, otherwise, -1 08 06 -04 -02 0 02 04 06 08
b} Pitch Angle (rad)

the motion is divergent when u = u,, or tends to a static equi-
librium position when u < u.. Figure 14 shows a limit cycle
pitch amplitude (rms) vs flow velocity for an initial angle of
0o = 10 deg. It is very clear there is a jump in response at the

Fig. 13 Motion behavior of the pitch LCO for 0, = 10 deg, x,,,=
—0.06 using quasisteady aerodynamics: a) time history and b)
Poincare map plot.
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Fig. 14 Pitch amplitude (rms) of LCO vs flow velocity for 0, =
10 deg, x,,,= —0.06 using unsteady aerodynamics.
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Fig. 15 Motion behavior of the pitch LCO for 0, = 10 deg, x,,,=
—0.06 using unsteady aerodynamics: a) time history and b) Poin-
care map plot.

linear critical flutter velocity (u. = 25.4 m/s). There is no LCO
with a smaller amplitude and the LCO amplitude varies only
slightly in the velocity range (25.4 m/s < u < 30.4 m/s). Com-
pared to the quasisteady case for the same initial pitch angle,
the flow velocity for the LCO response decreases from (45 to
25.4 m/s) and the steady LCO motion becomes more complex.
The unsteady aerodynamics, particularly the stall equations,
play an important role in the aeroelastic response. Figure 15a
shows the time history of pitch motion for u = 25.4 m/s (min-
imum flow velocity for the onset of LCO). The transient pro-
cess is quite long (about 2600 s) before the steady LCO motion
is reached. The Poincare map for # = 0 is shown in Fig. 15b.
Two frequency components are significant. One is associated
with the structural motion (plunge) with a frequency of 1.63
Hz and another with the coupling between the aerodynamic
pitch moment and structural pitch motion, 2.2 Hz. Because of
the stronger second component and hysteresis aerodynamics,

PSD of pitch response (db)
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Fig. 16 Motion behavior of the pitch LCO for 0, = 12.5 deg, x,,,
= —0.06 using unsteady aerodynamics: a) power spectral density
plot and b) Poincare map plot.

the Poincare map also becomes more complex. When the flow
velocity increases beyond 25.4 m/s, the steady-state LCO mo-
tion changes only slightly but the transient process becomes
shorter. For example, when u = 30 m/s, the transient is of about
50 s duration.

When we increase initial pitch angle further, say to 6, =
12.5 deg, the coupling between the aerodynamic pitch moment
and structural pitch motion becomes stronger as shown in the
power spectral density plot (Fig. 16a). The magnitude of this
component is almost equal to the first frequency component.
The motion, now dominated by the nonlinear aerodynamics,
becomes chaotic-like, as shown in Fig. 16b, the Poincare map.

VI. Concluding Remarks

This paper describes an innovative numerical procedure to
determine quasisteady and unsteady aerodynamic coefficients
of an external store of an aircraft. The experimentally identi-
fied unsteady aerodynamic model is then used to calculate the
nonlinear aeroelastic response.

1) The new experimental method proposed by the present
paper is an efficient and low-cost technique to identify the
unsteady, separated-flow aerodynamic coefficients for a com-
plex store structure of an aircraft. The results are verified by
the good correlation between theoretical prediction and aero-
dynamic measurement.

2) Using the experimentally identified unsteady aerody-
namic model to calculate the stability (flutter) and nonlinear
aeroelastic response, it is shown that there is a large difference
with the results obtained from the quasisteady aerodynamic
model, particularly for the larger initial pitch angles. For an
aircraft with an external store structure and at a high angle of
attack, the unsteady aerodynamic model should be considered.

3) A smaller LCO amplitude is predicted to occur for the
unsteady aerodynamic model than that for the quasisteady
model beyond the linear flutter velocity. However, the limit
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cycle amplitude predicted was so large that, because of safety
concerns, no LCO experiments were done with the aeroelastic
wind-tunnel model.
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